If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50.5=(2x^2)/2-3x+x^2
We move all terms to the left:
50.5-((2x^2)/2-3x+x^2)=0
Domain of the equation: 2-3x+x^2)!=0We get rid of parentheses
We move all terms containing x to the left, all other terms to the right
x^2)-3x!=-2
x∈R
-2x^2/2-x^2+3x+50.5=0
We multiply all the terms by the denominator
-2x^2-x^2*2+3x*2+(50.5)*2=0
We add all the numbers together, and all the variables
-2x^2-x^2*2+3x*2+101=0
Wy multiply elements
-2x^2-2x^2+6x+101=0
We add all the numbers together, and all the variables
-4x^2+6x+101=0
a = -4; b = 6; c = +101;
Δ = b2-4ac
Δ = 62-4·(-4)·101
Δ = 1652
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1652}=\sqrt{4*413}=\sqrt{4}*\sqrt{413}=2\sqrt{413}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{413}}{2*-4}=\frac{-6-2\sqrt{413}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{413}}{2*-4}=\frac{-6+2\sqrt{413}}{-8} $
| x^2+30x-110=P | | 1.28(z+16)=1.28 | | t+3=-24 | | F(x)=0.15x+50 | | d−1/12=5/12 | | 5(3z-6)=5(3z−6)= | | 4b+2=10b | | 3/11=6/2x | | 4/5=4/5x8/8 | | t-(-3)=-24 | | 7/8=x=1/4 | | t-(-3)=24 | | 7x+3=2(x+4) | | t-3=-24 | | –3v=–5v+8 | | 2(x-3)+6=-8 | | F(x)=0.05x+50 | | -2(x-3)+3(2-x)=x | | 4x^2+11x–3=0 | | .n/6=120 | | -5g=-10 | | t-3=-24 | | 103x+1=100 | | r÷5.5=3 | | g-28=114 | | -5g=-18 | | 2x+7=1/22x-2.5 | | 4x-85=180 | | x-2-(2x-1)=5+x-1 | | t-3=24 | | 9(x-2)-6x=9 | | 2f+6=-5-3f-9 |